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The Dynamics of Zooxanthellae
Populations: A Long-Term Study

in the Field
I. Fagoonee,1 H. B. Wilson,2 M. P. Hassell,2* J. R. Turner3

Coral bleaching characterized by the expulsion of symbiotic algae (zooxan-
thellae) is an increasing problem worldwide. Global warming has been impli-
cated as one cause, but the phenomenon cannot be fully comprehended without
an understanding of the variability of zooxanthellae populations in field con-
ditions. Results from a 6-year field study are presented, providing evidence of
density regulation but also of large variability in the zooxanthellae population
with regular episodes of very low densities. These bleaching events are likely
to be part of a constant variability in zooxanthellae density caused by envi-
ronmental fluctuations superimposed on a strong seasonal cycle in abundance.

Coral bleaching is normally characterized by
expulsion of the endosymbiotic zooxanthel-
lae (the unicellular dinoflagellate Symbo-
dinium spp.), loss of algal pigmentation, or
both. Coral bleaching events, defined here as
concomitant with very low zooxanthellae
density, have had serious effects on corals
and reefs worldwide (1). Given the depen-
dence of the coral on its symbiotic algae (2),
it is important to determine the cause of these
bleaching events. A number of explanations
for coral bleaching have been proposed, in-
cluding unusually high seawater temperatures
(3, 4), high doses of ultraviolet light (5),

bacterial infection (6 ), and changes in salinity
(7). What is crucial to our understanding of
zooxanthellae expulsion and bleaching is
how the density of zooxanthellae within the
coral is changing, if at all, under the prevail-
ing range of environmental conditions. Here
we present the results of a long-term field
study (August 1991 to March 1997), with
data collected on a weekly basis, during
which the population density of zooxanthel-
lae within the coral Acropora formosa (Dana
1846) in a shallow lagoon in Mauritius was
monitored (8) and environmental variables
were measured (9).

The time series of the zooxanthellae den-
sity over the study period is shown in Fig. 1.
The mean density was 1.7 3 106 cm–2 (SD 5
2.4 3 106 cm–2), comparable to densities of
about 1 3 106 to 2 3 106 cm–2 previously
reported (10, 11). There is evidence of some
regulatory mechanism, as the change in zoox-
anthellae density from one week to the next is

dependent on the density during the preced-
ing week (12). The time series reflects sam-
pling over the whole coral colony and does
not reflect changes in individual tips from
one week to the next; the density dependence
detected in the time series thus indicates
trends through time within the coral colony as
a whole.

In addition to the density dependence,
there is considerable variation in density,
with fluctuations over three orders of magni-
tude. Although densities from 0.5 3 106 to
5.0 3 106 cm–2 have been reported in differ-
ent studies (13–15), here such variability is
reported from a single coral colony over
time. In particular, there was a bleaching
event in the spring and summer of 1993
(density , 0.1 3 106 cm–2 from 28 October
to 17 December 1993; weeks 109 to 117 in

1Department of Biological Sciences, Faculty of Sci-
ence, University of Mauritius, Reduit, Mauritius. 2De-
partment of Biology, Imperial College, Silwood Park,
Ascot, Berks. SL5 7PY, UK. 3School of Ocean Sciences,
University of Wales, Bangor, Menai Bridge, Anglesey
LL59 5EY, UK.
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Fig. 1. Time series of zooxanthellae density
from August 1991 to March 1997. The coral
samples were collected on approximately a
weekly basis, and density was determined by a
standard methodology (13). At three points in
the time series, there are gaps because no data
were collected during these periods (for logis-
tical reasons). The total number of data points
is 159.
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Fig. 1) and there were other episodes of
very low density throughout the study pe-
riod (on 11 December 1992, 2 October
1995, and 19 February 1997). Although the
low density measured at these isolated
times can be attributed in part to measure-
ment error, all of these events were during
spring and summer (approximately Sep-
tember to March). The only winter period
to experience low densities was intermit-
tently between 22 July and 16 September
1993 (weeks 96, 98, and 104 in Fig. 1),
which preceded the spring-summer bleach-
ing event in 1993.

Figure 2A shows the same data with the
mean density for each month plotted. There
is a strong seasonal cycle in zooxanthellae
abundance: The densities in autumn and
winter are three times the densities in
spring and summer. This is consistent with
the analysis of another long-term experi-
mental data set from a site on the edge of
the tropics (14) (Hawaii, 20°N). It is un-
known whether such trends also occur in
coral communities that are much closer to
the equator and hence are exposed to less
seasonal fluctuation in conditions.

Concomitant with the large fluctuations in
density, there are also large fluctuations in

environmental parameters over the study pe-
riod (16 ). To test systematically whether
there is a significant effect of the environ-
mental parameters on the zooxanthellae den-
sity, we performed a multiple regression
analysis. Table 1 shows the minimum ade-
quate model that explains the zooxanthellae
density in terms of the explanatory variables
measured (time of year, temperature, dis-
solved oxygen concentration, and nitrate and
phosphate concentrations). The full regres-
sion model accounts for 40% of the variabil-
ity in density.

In the regression model, the linear and
quadratic terms of time of year are both
significant. The significance of the quadratic
term indicates curvilinearity of the relation
(Fig. 2A). Although there is a correlation
between time of year and temperature (and
also the amount of solar radiation as mea-
sured by the meteorological office on Mauri-
tius), the variation in zooxanthellae density is
better explained by season than by tempera-
ture (or solar radiation). This indicates that
although temperature and solar radiation may
be important, there may be other factors also
related to season that are significant.

Over and above the effects of season, the
zooxanthellae density is positively correlated

with nitrate concentration (Fig. 2B) indicat-
ing nitrogen limitation. Although we do not
know whether this particular coral species is
able to take up nitrate, a number of experi-
mental studies have shown that zooxanthellae
in other corals do respond to elevated nitrate
concentrations (10, 17). This is understand-
able because inorganic nitrogen from seawa-
ter is probably assimilated by the zooxanthel-
lae. These field data thus support the earlier
experimental work.

Although we have no definitive explana-
tion for the negative correlation with dis-
solved oxygen concentration, it is possibly
due to oxidative stress causing coral bleach-
ing (18), freshwater runoff, or plankton
blooms. However, there was no correlation
(direct or delayed) of dissolved oxygen con-
centration with rainfall or with visible plank-
ton blooms in the lagoon, which suggests that
these are unlikely explanations.

To test the robustness of this model, we
split the time series into two halves and
fitted a multiple regression model to each
half independently. In both halves, the min-
imum model accounted for more than 40%
of the observed variability. Time of year
(linear and quadratic terms) and nitrate
concentration were significant in both
halves, whereas dissolved oxygen concen-
tration was significant in only the first half.
Thus, the correlations with nitrates and sea-
son are robust, but the evidence for a neg-
ative correlation with dissolved oxygen
may be weaker. The unexplained variabil-
ity may be attributable to measurement er-
ror, coral growth at the tip (19), or sam-
pling over the whole colony (20).

Clearly, shallow coastal lagoons such as
this one experience large environmental fluc-
tuations. Because the regression model using
environmental variables accounted for 40%
of the observed variability, it is clear that the
environment was very variable and that this
variability had an important influence on
zooxanthellae density. The conditions in this
lagoon (high degree of anthropogenic activi-
ty, large environmental fluctuations) are
probably prevalent in lagoons in many areas
of the world. Under such conditions, it seems

Fig. 2. (A) Seasonal abundance of
density of zooxanthellae. For each
month the mean density of zooxan-
thellae was calculated, and the error
bars show the standard errors of the
means (the number in each month
varies between 7 and 19). The curve
fitted is a fourth-order polynomial,
the highest order polynomial that is
significant. (B) Logarithm of zooxan-
thellae density versus nitrate concen-
tration over the study period. The
regression line is significant (P ,
0.0001) and explains 16.5% of the
variance (n 5 142).

Table 1. Multiple regression model for zooxanthellae density. The linear and quadratic terms in all the
explanatory variables (day of year, temperature, and concentrations of dissolved oxygen, nitrate, and
phosphate) have been fitted. If the interaction terms between the variables are also fitted, qualitatively
similar results are obtained, but the interpretation is more complex. Logarithmic transformations of the
response and explanatory variables have been used, which ensures that all the error residuals are normally
distributed. The full multiple regression model is fitted with all variables included, but variables that are
not statistically significant are then removed (stepwise). The order of removal of the explanatory
variables is based on their t-values (the ratio of the regression constant to its standard error). The variable
with least significance (smallest t-value) is removed first. Explanatory variables that do not cause a
significant increase in deviance are then left out. The resulting analysis of deviance table shows only the
significant variables and is therefore the minimum adequate model. The full time series has 120 points
(that is, 119 degrees of freedom). The R2 value indicates that the full model explains 40% of the
variability in zooxanthellae density (with the loss of only 4 degrees of freedom). The deviance associated
with each variable is assessed by removal of that variable from the minimum model.

Source of variation
(R2 5 40.0%)

Regression constant
(6SD)

Deviance F P

Quadratic term: time of year –6.22(62.95) 18.62 17.82 ,0.0001
Quadratic term: dissolved oxygen –0.30(60.14) 18.20 17.42 ,0.0001
Nitrate 0.23(60.12) 15.85 15.17 ,0.001
Time of year 5.34(63.04) 12.89 12.33 ,0.001
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we should expect great variability in zooxan-
thellae density. Hence, bleaching events in
corals within such lagoons may be frequent
and part of the expected cycle of variability.
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Stem cell homing and repopulation are not well understood. The chemokine
stromal cell–derived factor-1 (SDF-1) and its receptor CXCR4 were found to be
critical for murine bone marrow engraftment by human severe combined
immunodeficient (SCID) repopulating stem cells. Treatment of human cells with
antibodies to CXCR4 prevented engraftment. In vitro CXCR4-dependent mi-
gration to SDF-1 of CD341CD382/low cells correlated with in vivo engraftment
and stem cell function. Stem cell factor and interleukin-6 induced CXCR4
expression on CD341 cells, which potentiated migration to SDF-1 and engraft-
ment in primary and secondary transplanted mice. Thus, up-regulation of
CXCR4 expression may be useful for improving engraftment of repopulating
stem cells in clinical transplantation.

Stem cells within the bone marrow microen-
vironment actively maintain continuous pro-
duction of all mature blood cell lineages
throughout life. These rare primitive cells are
functionally defined by their ability to home
to the bone marrow and to durably repopulate
transplanted recipients with both myeloid and

lymphoid cells (1, 2). Several groups have
established in vivo models for engrafting hu-
man stem cells (3–8). We developed a func-
tional in vivo assay for primitive human
SCID repopulating cells (SRCs) based on
their ability to repopulate the bone marrow of
intravenously transplanted SCID or non-
obese diabetic SCID (NOD/SCID) mice with
high levels of both myeloid and lymphoid
cells (5, 6, 8).

Chemokines are cytokines that are best
known for their ability to selectively attract
subsets of leukocytes to sites of inflammation
(9). The role that chemokines and their recep-
tors play in homing and repopulation of hu-
man stem cells is not fully understood. The
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Hospital Jerusalem, 91120, Israel. 4Kaplan Medical
Center, Rehovot 76100, Israel. 5Sourasky Medical
Center, Tel Aviv 64239, Israel. 6The Jackson Labora-
tory, Bar Harbor, ME 04609, USA.

*To whom correspondence should be addressed. E-
mail: litsvee@weizmann.weizmann.ac.il

R E P O R T S

www.sciencemag.org SCIENCE VOL 283 5 FEBRUARY 1999 845

 o
n 

A
ug

us
t 1

, 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org

